

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	Statsd Metrics 1.0.0 documentation

Welcome to Statsd Metrics’s documentation!

Contents:

	Metrics
	metrics – Metric classes and helper functions

	Client
	client – Statsd client

	client.tcp – Statsd client sending metrics over TCP

	Timing Helpers
	client.timing – Timing helpers

Introduction

Metric classes for Statsd, and Statsd clients (each metric in a single request, or send batch requests).
Provides APIs to create, parse or send metrics to a Statsd server.

The library also comes with a rich set of Statsd clients using the same metric classes, and
Python standard library socket module.

Metric Classes

Metric classes represent the data used in Statsd protocol excluding the IO, to create,
represent and parse Statsd requests. So any Statsd server and client regardless of the
IO implementation can use them to send/receive Statsd requests.

Available metrics:

	Counter

	Timer

	Gauge

	Set

	GaugeDelta

The metrics module also provides helper functions to normalize metric names, and a parse a Statsd request
and return the corresponding metric object. This could be used on the server side to parse the received requests.

Clients

A rich set of Statsd clients using the same metric classes, and Python standard library socket module.

	Client: Default client, sends request on each call using UDP

	BatchClient: Buffers metrics and flushes them in batch requests using UDP

	TCPClient: Sends request on each call using TCP

	TCPBatchClient: Buffers metrics and flushes them in batch requests using TCP

Timing Helpers

	Chronometer: Measure duration and send multiple Timer metrics

	Stopwatch: Measure time passed from a given reference and send Timer metrics with a specific name

Installation

pip install statsdmetrics

Dependencies

The only dependencies are Python 2.7+ and setuptools.
CPython 2.7, 3.2, 3.3, 3.4, 3.5, 3.6-dev, PyPy 2.6 and PyPy3 2.4, and Jython 2.7 are tested)

However on development (and test) environment
mock [https://pypi.python.org/pypi/mock] is required,
typing [https://pypi.python.org/pypi/typing] and
distutilazy [https://pypi.python.org/pypi/distutilazy] are recommended.

on dev/test env
pip install -r requirements-dev.txt

License

Statsd metrics is released under the terms of the MIT license [http://opensource.org/licenses/MIT].

Development

	Code is on GitHub [https://github.com/farzadghanei/statsd-metrics]

	Documentations are on Read The Docs [https://statsd-metrics.readthedocs.org]

 Copyright 2016, Farzad Ghanei.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Statsd Metrics 1.0.0 documentation

Metrics

Define the data types used in Statsd. Each data type is defined as a class, supported data types are:

	Counter

	Timer

	Gauge

	Set

	GaugeDelta

Note

The metric classes and helper functions are available from the package
directly, but internally they are defined in metrics module.
So there is no need to import the metrics module direcly,
unless you’re trying to access those objects that are not used reguraly and hence
are not exported, like the AbstractMetric class.

Each metric requires a name and a value.

from statsdmetrics import Counter, Timer
counter = Counter('event.login', 1)
timer = Timer('db.query.user', 10)

An optional sample rate can be specified for the metrics. Sample rate is used by the client and the server to
help to reduce network traffic, or reduce the load on the server.

>>> from statsdmetrics import Counter
>>> counter = Counter('event.login', 1, 0.2)
>>> counter.name
'event.login'
>>> counter.count
1
>>> counter.sample_rate
0.2

All metrics have name and sample_rate properties,
but they store their value in different properties.

Metrics provide to_request() method to create the proper value used to send the metric to the server.

>>> from statsdmetrics import Counter, Timer, Gauge, Set, GaugeDelta
>>> counter = Counter('event.login', 1, 0.2)
>>> counter.to_request()
'event.login:1|c|@0.2'
>>> timer = Timer('db.query.user', 10, 0.5)
>>> timer.to_request()
'db.query.user:10|ms|@0.5'
>>> gauge = Gauge('memory', 20480)
>>> gauge.to_request()
'memory:20480|g'
>>> set_ = Set('unique.users', 'first')
>>> set_.to_request()
'unique.users:first|s'
>>> delta = GaugeDelta('memory', 128)
>>> delta.to_request()
'memory:+128|g'
>>> delta.delta = -256
>>> delta.to_request()
'memory:-256|g'

metrics – Metric classes and helper functions

Metric Classes

	
class metrics.AbstractMetric

	Abstract class that all metric classes would extend from

	
name

	the name of the metric

	
sample_rate

	the rate of sampling that the client considers when sending metrics

	
to_request() str

	return the string that is used in the Statsd request to send the metric

	
class metrics.Counter(name, count[, sample_rate])

	A metric to count events

	
count

	current count of events being reporeted via the metric

	
class metrics.Timer(name, milliseconds[, sample_rate])

	A metric for timing durations, in milliseconds.

	
milliseconds

	number of milliseconds for the duration

	
class metrics.Gauge(name, value[, sample_rate])

	Any arbitrary value, like the memory usage in bytes.

	
value

	the value of the metric

	
class metrics.Set(name, value[, sample_rate])

	A set of unique values counted on the server side for each sampling period.
Techincally the value could be anything that can be serialized to a string (to be sent
on the request).

	
value

	the value of the metric

	
class metrics.GaugeDelta(name, delta[, sample_rate])

	A value change in a gauge, could be a positive or negative numeric value.

	
delta

	the difference in the value of the gauge

Module functions

	
metrics.normalize_metric_name(name) str

	normalize a metric name, removing characters that might not be welcome by common backends.

>>> from statsdmetrics import normalize_metric_name
>>> normalize_metric_name("will replace some, and $remove! others*")
'will_replace_some_and_remove_others'

If passed argument is not a string, an TypeError is raised.

	
metrics.parse_metric_from_request(request) str

	parse a metric object from a request string.

>>> from statsdmetrics import parse_metric_from_request
>>> metric = parse_metric_from_request("memory:2048|g")
>>> type(metric)
<class 'statsdmetrics.metrics.Gauge'>
>>> metric.name, metric.value, metric.sample_rate
('memory', 2048.0, 1)
>>> metric = parse_metric_from_request('event.connections:-2|c|@0.6')
>>> type(metric)
<class 'statsdmetrics.metrics.Counter'>
>>> metric.name, metric.count, metric.sample_rate
('event.connections', -2, 0.6)

If the request is invalid, a ValueError is raised.

 Copyright 2016, Farzad Ghanei.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Statsd Metrics 1.0.0 documentation

Client

To send the metrics to Statsd server, client classes are available
in the client package and client.tcp module.

client – Statsd client

	
class client.Client(host, port=8125, prefix='')

	Default Statsd client that sends each metric in a separate UDP request

	
host

	the host name (or IP address) of Statsd server. This property is readonly.

	
port

	the port number of Statsd server. This property is readonly.

	
prefix

	the default prefix for all metric names sent from the client

	
remote_address

	tuple of resolved server address (host, port). This property is readonly.

	
increment(name, count=1, rate=1)

	Increase a Counter metric by count with an integer value.
An optional sample rate can be specified.

	
decrement(name, count=1, rate=1)

	Decrease a Counter metric by count with an integer value.
An optional sample rate can be specified.

	
timing(name, milliseconds, rate=1)

	Send a Timer metric for the duration of a task in milliseconds. The milliseconds
should be a none-negative numeric value.
An optional sample rate can be specified.

	
gauge(name, value, rate=1)

	Send a Gauge metric with the specified value. The value should be a none-negative
numeric value.
An optional sample rate can be specified.

	
set(name, value, rate=1)

	Send a Set metric with the specified value. The server will count the number of unique
values during each sampling period. The value could be any value that can be converted
to a string.
An optional sample rate can be specified.

	
gauge_delta(name, delta, rate=1)

	Send a GaugeDelta metric with the specified delta. The delta should be
a numeric value. An optional sample rate can be specified.

	
batch_client(size=512)

	Create a BatchClient object, using the same configurations of current client.
This batch client could be used as a context manager in a with statement. After the with
block when the context manager exits, all the metrics are flushed to the server in batch requests.

	
chronometer()

	Create a client.timing.Chronometer that uses current client to send
timing metrics.

	
stopwatch(name, rate=1, reference=None)

	Create a client.timing.Stopwatch that uses current client to send
timing metrics.

Note

Most Statsd servers do not apply the sample rate
on timing metrics calculated results (mean, percentile, max, min), gauge or
set metrics, but they take the rate into account for the number of received samples.
Some statsd servers totally ignore the sample rate for metrics other than counters.

Examples

from statsdmetrics.client import Client
client = Client("stats.example.org")
client.increment("login")
client.timing("db.search.username", 3500)
client.prefix = "other"
client.gauge_delta("memory", -256)
client.decrement(name="connections", count=2)

from statsdmetrics.client import Client

client = Client("stats.example.org")
with client.batch_client() as batch_client:
 batch_client.increment("login")
 batch_client.decrement(name="connections", count=2)
 batch_client.timing("db.search.username", 3500)
now all metrics are flushed automatically in batch requests

	
class client.BatchClient(host, port=8125, prefix='', batch_size=512)

	Statsd client that buffers all metrics and sends them in batch requests
over UDP when instructed to flush the metrics explicitly.

Each UDP request might contain multiple metrics, but limited to a certain batch size
to avoid UDP fragmentation.

The size of batch requests is not the fixed size of the requests, since metrics can not be broken
into multiple requests. So if adding a new metric overflows this size, then that metric will be sent in
a new batch request.

	
batch_size

	Size of each batch request. This property is readonly.

	
clear()

	Clear buffered metrics

	
flush()

	Send the buffered metrics in batch requests.

	
unit_client()

	Create a Client object, using the same configurations of current batch client
to send the metrics on each request. The client uses the same resources as the batch client.

from statsdmetrics.client import BatchClient

client = BatchClient("stats.example.org")
client.set("unique.ip_address", "10.10.10.1")
client.gauge("memory", 20480)
client.flush() # sends one UDP packet to remote server, carrying both metrics

client.tcp – Statsd client sending metrics over TCP

	
class client.tcp.TCPClient(host, port=8125, prefix='')

	Statsd client that sends each metric in separate requests over TCP.

Provides the same interface as Client.

Examples

from statsdmetrics.client.tcp import TCPClient
client = TCPClient("stats.example.org")
client.increment("login")
client.timing("db.search.username", 3500)
client.prefix = "other"
client.gauge_delta("memory", -256)
client.decrement(name="connections", count=2)

from statsdmetrics.client.tcp import TCPClient

client = TCPClient("stats.example.org")
with client.batch_client() as batch_client:
 batch_client.increment("login")
 batch_client.decrement(name="connections", count=2)
 batch_client.timing("db.search.username", 3500)
now all metrics are flushed automatically in batch requests

	
class client.tcp.TCPBatchClient(host, port=8125, prefix='', batch_size=512)

	Statsd client that buffers all metrics and sends them in batch requests
over TCP when instructed to flush the metrics explicitly.

Provides the same interface as BatchClient.

from statsdmetrics.client.tcp import TCPBatchClient

client = TCPBatchClient("stats.example.org")
client.set("unique.ip_address", "10.10.10.1")
client.gauge("memory", 20480)
client.flush() # sends one TCP packet to remote server, carrying both metrics

 Copyright 2016, Farzad Ghanei.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	Statsd Metrics 1.0.0 documentation

Timing Helpers

Classes to help measure time and send metrics.Timer metrics using any client.

client.timing – Timing helpers

	
class client.timing.Chronometer(client, rate=1)

	Chronometer calculates duration (of function calls, etc.) and
sends them with provided metric names.
Normally these is no need to instantiate this class directly, but
you can call client.Client.chronometer() on any client, to
get a configured Chronometer.

	
client

	The client used to send the timing metrics. This can be any client
from client package.

	
rate

	the default sample rate for metrics to send. Should be a float between 0 and 1.
This is the same as used in all clients.

	
since(name, timestamp, rate=None)

	Calculate the time passed since the given timestamp, and send
a Timer metric with the provided name.
The timestamp can be a float (seconds passed from epoch, as returned by time.time(),
or a datetime.datetime instance.
Rate is the sample rate to use, or None to use the default sample rate of the Chronometer.

	
time_callable(name, target, rate=None, args=(), kwargs={})

	Calculate the time it takes to run the callable target (with provided args and kwargs)
and send the a Timer metric with the specific name.
Rate is the sample rate to use, or None to use the default sample rate of the Chronometer.

	
wrap(name, rate=None)

	Used as a function decorator, to calculate the time it takes
to run the decorated function, and send a Timer metric
with the specified name.
Rate is the sample rate to use, or None to use the default sample rate of the Chronometer.

Examples

from time import time, sleep
from statsdmetrics.client import Client
from statsdmetrics.client.timing import Chronometer

start_time = time()
client = Client("stats.example.org")
chronometer = Chronometer(client)
chronometer.since("instantiate", start_time)

def wait(secs):
 sleep(secs) # or any timed operation

chronometer.time_callable("waited", wait, args=(0.56,))

@chronometer.wrap("wait_decorated")
def another_wait(secs):
 sleep(secs) # or any timed operation

another_wait(0.23) # sends the "wait_decorated" Timer metric
chronometer.since("overall", start_time)

If a batch client (like client.BatchClient or client.tcp.TCPBatchClient)
is used, then the behavior of the client requires an explicit flush() call.

from datetime import datetime
from statsdmetrics.client.tcp import TCPBatchCPClient
from statsdmetrics.client.timing import Chronometer

start_time = datetime.now()
client = TCPBatchClient("stats.example.org")
chronometer = Chronometer(client)
chronometer.since("instantiate", start_time)

def wait_with_kwargs(name, key=val):
 sleep(1) # or any timed operation

chronometer.time_callable("waited", wait_with_kwargs, kwargs=dict(name="foo", key="bar"))
client.flush()

	
class client.timing.Stopwatch(client, name, rate=1, reference=None)

	Stopwatch calculates duration passed from a given reference time (by default uses
the instantiation time) for a specific metric name.
So time passed since the reference time can be sent multiple times.
Normally these is no need to instantiate this class directly, but
you can call client.Client.stopwatch() on any client, to
get a configured Chronometer.

	
client

	The client used to send the timing metrics. This can be any client
from client package.

	
name

	The name for the metric sent by the stopwatch.

	
rate

	The default sample rate for metrics to send. Should be a float between 0 and 1.
This is the same as used in all clients.

	
reference

	The time reference that duration is calculated from. It’s a float value
of seconds passed since epoch, same as time.time().

	
reset()

	Reset the stopwatch, updating the reference with current time.
Returns a self reference for method chaining.

	
send(rate=None)

	Calculate time passed since reference and send the metric.
A sampling rate can be specified, or None (default) uses the default
sampling rate of the stopwatch.
Returns a self reference for method chaining.

Examples

from time import time, sleep
from statsdmetrics.client import Client
from statsdmetrics.client.timing import Stopwatch

start_time = time()
client = Client("stats.example.org")
stopwatch = Stopwatch(client, "process", start_time)

sleep(2) # do stuff
stopwatch.send()
sleep(1) # do other stuff
stopwatch.send()

If a batch client (like client.BatchClient or client.tcp.TCPBatchClient)
is used, then the behavior of the client requires an explicit flush() call.

from datetime import datetime
from statsdmetrics.client.tcp import TCPBatchCPClient
from statsdmetrics.client.timing import Stopwatch

start_time = time()
client = TCPBatchClient("stats.example.org")
stopwatch = Stopwatch(client, "process", start_time)

sleep(3) # do stuff
stopwatch.send()
sleep(1) # do other stuff
stopwatch.send()

client.flush()

Stopwatch is a context manager, so can be used to measure duration of a with block

from time import time, sleep
from statsdmetrics.client import Client
from statsdmetrics.client.timing import Stopwatch

client = Client("stats.example.org")
with client.stopwatch("some_block"):
 sleep(3) # do stuff in the context

now a Timer metric named "some_block" is sent, whose value is the duration of the block

 Copyright 2016, Farzad Ghanei.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	Statsd Metrics 1.0.0 documentation

 Python Module Index

 c |
 m

 			

 		
 c	

 	[image: -]
 	
 client	
 Define Statsd client classes

 	
 	
 client.tcp	
 Define Statsd client classes that send metrics over TCP

 	
 	
 client.timing	
 Provides easier ways to send timing metrics. Most of times there is no need to instantiate these classes,
but they can be obtained directly from any client class in the :mod:`client` package.

 			

 		
 m	

 	
 	
 metrics	
 Define metrics classes and helper functions

 Copyright 2016, Farzad Ghanei.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	Statsd Metrics 1.0.0 documentation

Index

 A
 | B
 | C
 | D
 | F
 | G
 | I
 | M
 | N
 | P
 | R
 | S
 | T
 | U
 | W

A

 	

 	AbstractMetric (class in metrics)

 	AbstractMetric.name (in module metrics)

 	

 	AbstractMetric.sample_rate (in module metrics)

B

 	

 	batch_client() (client.Client method)

 	BatchClient (class in client)

 	

 	BatchClient.batch_size (in module client)

C

 	

 	Chronometer (class in client.timing)

 	chronometer() (client.Client method)

 	Chronometer.client (in module client.timing)

 	Chronometer.rate (in module client.timing)

 	clear() (client.BatchClient method)

 	Client (class in client)

 	client (module)

 	Client.host (in module client)

 	

 	Client.port (in module client)

 	Client.prefix (in module client)

 	Client.remote_address (in module client)

 	client.tcp (module)

 	client.timing (module)

 	Counter (class in metrics)

 	Counter.count (in module metrics)

D

 	

 	decrement() (client.Client method)

F

 	

 	flush() (client.BatchClient method)

G

 	

 	Gauge (class in metrics)

 	gauge() (client.Client method)

 	Gauge.value (in module metrics)

 	

 	gauge_delta() (client.Client method)

 	GaugeDelta (class in metrics)

 	GaugeDelta.delta (in module metrics)

I

 	

 	increment() (client.Client method)

M

 	

 	metrics (module)

N

 	

 	normalize_metric_name() (in module metrics)

P

 	

 	parse_metric_from_request() (in module metrics)

R

 	

 	reset() (client.timing.Stopwatch method)

S

 	

 	send() (client.timing.Stopwatch method)

 	Set (class in metrics)

 	set() (client.Client method)

 	Set.value (in module metrics)

 	since() (client.timing.Chronometer method)

 	Stopwatch (class in client.timing)

 	

 	stopwatch() (client.Client method)

 	Stopwatch.client (in module client.timing)

 	Stopwatch.name (in module client.timing)

 	Stopwatch.rate (in module client.timing)

 	Stopwatch.reference (in module client.timing)

T

 	

 	TCPBatchClient (class in client.tcp)

 	TCPClient (class in client.tcp)

 	time_callable() (client.timing.Chronometer method)

 	Timer (class in metrics)

 	

 	Timer.milliseconds (in module metrics)

 	timing() (client.Client method)

 	to_request() (metrics.AbstractMetric method)

U

 	

 	unit_client() (client.BatchClient method)

W

 	

 	wrap() (client.timing.Chronometer method)

 Copyright 2016, Farzad Ghanei.
 Created using Sphinx 1.3.5.

 search.html

 Navigation

 		
 index

 		
 modules |

 		Statsd Metrics 1.0.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2016, Farzad Ghanei.
 Created using Sphinx 1.3.5.

_static/comment.png

_static/plus.png

_static/down.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/comment-bright.png

_static/up.png

_static/down-pressed.png

_static/ajax-loader.gif

