
Statsd Metrics Documentation
Release 1.0.0

Farzad Ghanei

Aug 05, 2018

Contents

1 Metrics 3
1.1 metrics – Metric classes and helper functions . 4

2 Client 7
2.1 client – Statsd client . 7
2.2 client.tcp – Statsd client sending metrics over TCP . 9

3 Timing Helpers 11
3.1 client.timing – Timing helpers . 11

4 Introduction 15
4.1 Metric Classes . 15
4.2 Clients . 15
4.3 Timing Helpers . 16

5 Installation 17
5.1 Dependencies . 17

6 License 19

7 Development 21

Python Module Index 23

i

ii

Statsd Metrics Documentation, Release 1.0.0

Contents:

Contents 1

Statsd Metrics Documentation, Release 1.0.0

2 Contents

CHAPTER 1

Metrics

Define the data types used in Statsd. Each data type is defined as a class, supported data types are:

• Counter

• Timer

• Gauge

• Set

• GaugeDelta

Note: The metric classes and helper functions are available from the package directly, but internally they are defined
in metrics module. So there is no need to import the metrics module direcly, unless you’re trying to access those
objects that are not used reguraly and hence are not exported, like the AbstractMetric class.

Each metric requires a name and a value.

from statsdmetrics import Counter, Timer
counter = Counter('event.login', 1)
timer = Timer('db.query.user', 10)

An optional sample rate can be specified for the metrics. Sample rate is used by the client and the server to help to
reduce network traffic, or reduce the load on the server.

>>> from statsdmetrics import Counter
>>> counter = Counter('event.login', 1, 0.2)
>>> counter.name
'event.login'
>>> counter.count
1
>>> counter.sample_rate
0.2

All metrics have name and sample_rate properties, but they store their value in different properties.

3

Statsd Metrics Documentation, Release 1.0.0

Metrics provide to_request() method to create the proper value used to send the metric to the server.

>>> from statsdmetrics import Counter, Timer, Gauge, Set, GaugeDelta
>>> counter = Counter('event.login', 1, 0.2)
>>> counter.to_request()
'event.login:1|c|@0.2'
>>> timer = Timer('db.query.user', 10, 0.5)
>>> timer.to_request()
'db.query.user:10|ms|@0.5'
>>> gauge = Gauge('memory', 20480)
>>> gauge.to_request()
'memory:20480|g'
>>> set_ = Set('unique.users', 'first')
>>> set_.to_request()
'unique.users:first|s'
>>> delta = GaugeDelta('memory', 128)
>>> delta.to_request()
'memory:+128|g'
>>> delta.delta = -256
>>> delta.to_request()
'memory:-256|g'

1.1 metrics – Metric classes and helper functions

1.1.1 Metric Classes

class metrics.AbstractMetric
Abstract class that all metric classes would extend from

name
the name of the metric

sample_rate
the rate of sampling that the client considers when sending metrics

to_request()→ str
return the string that is used in the Statsd request to send the metric

class metrics.Counter(name, count[, sample_rate])
A metric to count events

count
current count of events being reporeted via the metric

class metrics.Timer(name, milliseconds[, sample_rate])
A metric for timing durations, in milliseconds.

milliseconds
number of milliseconds for the duration

class metrics.Gauge(name, value[, sample_rate])
Any arbitrary value, like the memory usage in bytes.

value
the value of the metric

4 Chapter 1. Metrics

Statsd Metrics Documentation, Release 1.0.0

class metrics.Set(name, value[, sample_rate])
A set of unique values counted on the server side for each sampling period. Techincally the value could be
anything that can be serialized to a string (to be sent on the request).

value
the value of the metric

class metrics.GaugeDelta(name, delta[, sample_rate])
A value change in a gauge, could be a positive or negative numeric value.

delta
the difference in the value of the gauge

1.1.2 Module functions

metrics.normalize_metric_name(name)→ str
normalize a metric name, removing characters that might not be welcome by common backends.

>>> from statsdmetrics import normalize_metric_name
>>> normalize_metric_name("will replace some, and $remove! others*")
'will_replace_some_and_remove_others'

If passed argument is not a string, an TypeError is raised.

metrics.parse_metric_from_request(request)→ str
parse a metric object from a request string.

>>> from statsdmetrics import parse_metric_from_request
>>> metric = parse_metric_from_request("memory:2048|g")
>>> type(metric)
<class 'statsdmetrics.metrics.Gauge'>
>>> metric.name, metric.value, metric.sample_rate
('memory', 2048.0, 1)
>>> metric = parse_metric_from_request('event.connections:-2|c|@0.6')
>>> type(metric)
<class 'statsdmetrics.metrics.Counter'>
>>> metric.name, metric.count, metric.sample_rate
('event.connections', -2, 0.6)

If the request is invalid, a ValueError is raised.

1.1. metrics – Metric classes and helper functions 5

Statsd Metrics Documentation, Release 1.0.0

6 Chapter 1. Metrics

CHAPTER 2

Client

To send the metrics to Statsd server, client classes are available in the client package and client.tcp module.

2.1 client – Statsd client

class client.Client(host, port=8125, prefix=”)
Default Statsd client that sends each metric in a separate UDP request

host
the host name (or IP address) of Statsd server. This property is readonly.

port
the port number of Statsd server. This property is readonly.

prefix
the default prefix for all metric names sent from the client

remote_address
tuple of resolved server address (host, port). This property is readonly.

increment(name, count=1, rate=1)
Increase a Counter metric by count with an integer value. An optional sample rate can be specified.

decrement(name, count=1, rate=1)
Decrease a Counter metric by count with an integer value. An optional sample rate can be specified.

timing(name, milliseconds, rate=1)
Send a Timer metric for the duration of a task in milliseconds. The milliseconds should be a none-
negative numeric value. An optional sample rate can be specified.

gauge(name, value, rate=1)
Send a Gauge metric with the specified value. The value should be a none-negative numeric value. An
optional sample rate can be specified.

set(name, value, rate=1)
Send a Set metric with the specified value. The server will count the number of unique values during each

7

Statsd Metrics Documentation, Release 1.0.0

sampling period. The value could be any value that can be converted to a string. An optional sample rate
can be specified.

gauge_delta(name, delta, rate=1)
Send a GaugeDelta metric with the specified delta. The delta should be a numeric value. An optional
sample rate can be specified.

batch_client(size=512)
Create a BatchClient object, using the same configurations of current client. This batch client could
be used as a context manager in a with statement. After the with block when the context manager exits,
all the metrics are flushed to the server in batch requests.

chronometer()
Create a client.timing.Chronometer that uses current client to send timing metrics.

stopwatch(name, rate=1, reference=None)
Create a client.timing.Stopwatch that uses current client to send timing metrics.

Note: Most Statsd servers do not apply the sample rate on timing metrics calculated results (mean, percentile, max,
min), gauge or set metrics, but they take the rate into account for the number of received samples. Some statsd servers
totally ignore the sample rate for metrics other than counters.

2.1.1 Examples

from statsdmetrics.client import Client
client = Client("stats.example.org")
client.increment("login")
client.timing("db.search.username", 3500)
client.prefix = "other"
client.gauge_delta("memory", -256)
client.decrement(name="connections", count=2)

from statsdmetrics.client import Client

client = Client("stats.example.org")
with client.batch_client() as batch_client:

batch_client.increment("login")
batch_client.decrement(name="connections", count=2)
batch_client.timing("db.search.username", 3500)

now all metrics are flushed automatically in batch requests

class client.BatchClient(host, port=8125, prefix=”, batch_size=512)
Statsd client that buffers all metrics and sends them in batch requests over UDP when instructed to flush the
metrics explicitly.

Each UDP request might contain multiple metrics, but limited to a certain batch size to avoid UDP fragmenta-
tion.

The size of batch requests is not the fixed size of the requests, since metrics can not be broken into multiple
requests. So if adding a new metric overflows this size, then that metric will be sent in a new batch request.

batch_size
Size of each batch request. This property is readonly.

clear()
Clear buffered metrics

8 Chapter 2. Client

Statsd Metrics Documentation, Release 1.0.0

flush()
Send the buffered metrics in batch requests.

unit_client()
Create a Client object, using the same configurations of current batch client to send the metrics on each
request. The client uses the same resources as the batch client.

from statsdmetrics.client import BatchClient

client = BatchClient("stats.example.org")
client.set("unique.ip_address", "10.10.10.1")
client.gauge("memory", 20480)
client.flush() # sends one UDP packet to remote server, carrying both metrics

2.2 client.tcp – Statsd client sending metrics over TCP

class client.tcp.TCPClient(host, port=8125, prefix=”)
Statsd client that sends each metric in separate requests over TCP.

Provides the same interface as Client.

2.2.1 Examples

from statsdmetrics.client.tcp import TCPClient
client = TCPClient("stats.example.org")
client.increment("login")
client.timing("db.search.username", 3500)
client.prefix = "other"
client.gauge_delta("memory", -256)
client.decrement(name="connections", count=2)

from statsdmetrics.client.tcp import TCPClient

client = TCPClient("stats.example.org")
with client.batch_client() as batch_client:

batch_client.increment("login")
batch_client.decrement(name="connections", count=2)
batch_client.timing("db.search.username", 3500)

now all metrics are flushed automatically in batch requests

class client.tcp.TCPBatchClient(host, port=8125, prefix=”, batch_size=512)
Statsd client that buffers all metrics and sends them in batch requests over TCP when instructed to flush the
metrics explicitly.

Provides the same interface as BatchClient.

from statsdmetrics.client.tcp import TCPBatchClient

client = TCPBatchClient("stats.example.org")
client.set("unique.ip_address", "10.10.10.1")
client.gauge("memory", 20480)
client.flush() # sends one TCP packet to remote server, carrying both metrics

2.2. client.tcp – Statsd client sending metrics over TCP 9

Statsd Metrics Documentation, Release 1.0.0

10 Chapter 2. Client

CHAPTER 3

Timing Helpers

Classes to help measure time and send metrics.Timer metrics using any client.

3.1 client.timing – Timing helpers

class client.timing.Chronometer(client, rate=1)
Chronometer calculates duration (of function calls, etc.) and sends them with provided metric names. Normally
these is no need to instantiate this class directly, but you can call client.Client.chronometer() on
any client, to get a configured Chronometer.

client
The client used to send the timing metrics. This can be any client from client package.

rate
the default sample rate for metrics to send. Should be a float between 0 and 1. This is the same as used in
all clients.

since(name, timestamp, rate=None)
Calculate the time passed since the given timestamp, and send a Timer metric with the provided
name. The timestamp can be a float (seconds passed from epoch, as returned by time.time(), or a
datetime.datetime instance. Rate is the sample rate to use, or None to use the default sample rate
of the Chronometer.

time_callable(name, target, rate=None, args=(), kwargs={})
Calculate the time it takes to run the callable target (with provided args and kwargs) and send the a Timer
metric with the specific name. Rate is the sample rate to use, or None to use the default sample rate of the
Chronometer.

wrap(name, rate=None)
Used as a function decorator, to calculate the time it takes to run the decorated function, and send a Timer
metric with the specified name. Rate is the sample rate to use, or None to use the default sample rate of
the Chronometer.

11

Statsd Metrics Documentation, Release 1.0.0

3.1.1 Examples

from time import time, sleep
from statsdmetrics.client import Client
from statsdmetrics.client.timing import Chronometer

start_time = time()
client = Client("stats.example.org")
chronometer = Chronometer(client)
chronometer.since("instantiate", start_time)

def wait(secs):
sleep(secs) # or any timed operation

chronometer.time_callable("waited", wait, args=(0.56,))

@chronometer.wrap("wait_decorated")
def another_wait(secs):

sleep(secs) # or any timed operation

another_wait(0.23) # sends the "wait_decorated" Timer metric
chronometer.since("overall", start_time)

If a batch client (like client.BatchClient or client.tcp.TCPBatchClient) is used, then the behavior
of the client requires an explicit flush() call.

from datetime import datetime
from statsdmetrics.client.tcp import TCPBatchCPClient
from statsdmetrics.client.timing import Chronometer

start_time = datetime.now()
client = TCPBatchClient("stats.example.org")
chronometer = Chronometer(client)
chronometer.since("instantiate", start_time)

def wait_with_kwargs(name, key=val):
sleep(1) # or any timed operation

chronometer.time_callable("waited", wait_with_kwargs, kwargs=dict(name="foo", key="bar
→˓"))
client.flush()

class client.timing.Stopwatch(client, name, rate=1, reference=None)
Stopwatch calculates duration passed from a given reference time (by default uses the instantiation time) for a
specific metric name. So time passed since the reference time can be sent multiple times. Normally these is no
need to instantiate this class directly, but you can call client.Client.stopwatch() on any client, to get
a configured Chronometer.

client
The client used to send the timing metrics. This can be any client from client package.

name
The name for the metric sent by the stopwatch.

rate
The default sample rate for metrics to send. Should be a float between 0 and 1. This is the same as used in
all clients.

reference

12 Chapter 3. Timing Helpers

Statsd Metrics Documentation, Release 1.0.0

The time reference that duration is calculated from. It’s a float value of seconds passed since epoch, same
as time.time().

reset()
Reset the stopwatch, updating the reference with current time. Returns a self reference for method chain-
ing.

send(rate=None)
Calculate time passed since reference and send the metric. A sampling rate can be specified, or None
(default) uses the default sampling rate of the stopwatch. Returns a self reference for method chaining.

3.1.2 Examples

from time import time, sleep
from statsdmetrics.client import Client
from statsdmetrics.client.timing import Stopwatch

start_time = time()
client = Client("stats.example.org")
stopwatch = Stopwatch(client, "process", start_time)

sleep(2) # do stuff
stopwatch.send()
sleep(1) # do other stuff
stopwatch.send()

If a batch client (like client.BatchClient or client.tcp.TCPBatchClient) is used, then the behavior
of the client requires an explicit flush() call.

from datetime import datetime
from statsdmetrics.client.tcp import TCPBatchCPClient
from statsdmetrics.client.timing import Stopwatch

start_time = time()
client = TCPBatchClient("stats.example.org")
stopwatch = Stopwatch(client, "process", start_time)

sleep(3) # do stuff
stopwatch.send()
sleep(1) # do other stuff
stopwatch.send()

client.flush()

Stopwatch is a context manager, so can be used to measure duration of a with block

from time import time, sleep
from statsdmetrics.client import Client
from statsdmetrics.client.timing import Stopwatch

client = Client("stats.example.org")
with client.stopwatch("some_block"):

sleep(3) # do stuff in the context

now a Timer metric named "some_block" is sent, whose value is the duration of the
→˓block

3.1. client.timing – Timing helpers 13

Statsd Metrics Documentation, Release 1.0.0

14 Chapter 3. Timing Helpers

CHAPTER 4

Introduction

Metric classes for Statsd, and Statsd clients (each metric in a single request, or send batch requests). Provides APIs to
create, parse or send metrics to a Statsd server.

The library also comes with a rich set of Statsd clients using the same metric classes, and Python standard library
socket module.

4.1 Metric Classes

Metric classes represent the data used in Statsd protocol excluding the IO, to create, represent and parse Statsd requests.
So any Statsd server and client regardless of the IO implementation can use them to send/receive Statsd requests.

Available metrics:

• Counter

• Timer

• Gauge

• Set

• GaugeDelta

The metrics module also provides helper functions to normalize metric names, and a parse a Statsd request and
return the corresponding metric object. This could be used on the server side to parse the received requests.

4.2 Clients

A rich set of Statsd clients using the same metric classes, and Python standard library socket module.

• Client: Default client, sends request on each call using UDP

• BatchClient: Buffers metrics and flushes them in batch requests using UDP

15

Statsd Metrics Documentation, Release 1.0.0

• TCPClient: Sends request on each call using TCP

• TCPBatchClient: Buffers metrics and flushes them in batch requests using TCP

4.3 Timing Helpers

• Chronometer: Measure duration and send multiple Timer metrics

• Stopwatch: Measure time passed from a given reference and send Timer metrics with a specific name

16 Chapter 4. Introduction

CHAPTER 5

Installation

$ pip install statsdmetrics

5.1 Dependencies

The only dependencies are Python 2.7+ and setuptools. CPython 2.7, 3.4+, 3.7-dev, PyPy and Jython are tested)

However on development (and test) environment pytest, mock is required (for Python 2), typing is recommended.

on dev/test env
$ pip install -r requirements-dev.txt

17

https://pypi.org/project/pytest/
https://pypi.org/project/mock
https://pypi.org/project/typing

Statsd Metrics Documentation, Release 1.0.0

18 Chapter 5. Installation

CHAPTER 6

License

Statsd metrics is released under the terms of the MIT license.

The MIT License (MIT)

Copyright (c) 2015-2018 Farzad Ghanei

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

19

http://opensource.org/licenses/MIT

Statsd Metrics Documentation, Release 1.0.0

20 Chapter 6. License

CHAPTER 7

Development

• Code is on GitHub

• Documentations are on Read The Docs

21

https://github.com/farzadghanei/statsd-metrics
https://statsd-metrics.readthedocs.org

Statsd Metrics Documentation, Release 1.0.0

22 Chapter 7. Development

Python Module Index

c
client, 7
client.tcp, 9
client.timing, 11

m
metrics, 4

23

Statsd Metrics Documentation, Release 1.0.0

24 Python Module Index

Index

A
AbstractMetric (class in metrics), 4
AbstractMetric.name (in module metrics), 4
AbstractMetric.sample_rate (in module metrics), 4

B
batch_client() (client.Client method), 8
BatchClient (class in client), 8
BatchClient.batch_size (in module client), 8

C
Chronometer (class in client.timing), 11
chronometer() (client.Client method), 8
Chronometer.client (in module client.timing), 11
Chronometer.rate (in module client.timing), 11
clear() (client.BatchClient method), 8
Client (class in client), 7
client (module), 7
Client.host (in module client), 7
Client.port (in module client), 7
Client.prefix (in module client), 7
Client.remote_address (in module client), 7
client.tcp (module), 9
client.timing (module), 11
Counter (class in metrics), 4
Counter.count (in module metrics), 4

D
decrement() (client.Client method), 7

F
flush() (client.BatchClient method), 8

G
Gauge (class in metrics), 4
gauge() (client.Client method), 7
Gauge.value (in module metrics), 4
gauge_delta() (client.Client method), 8
GaugeDelta (class in metrics), 5

GaugeDelta.delta (in module metrics), 5

I
increment() (client.Client method), 7

M
metrics (module), 4

N
normalize_metric_name() (in module metrics), 5

P
parse_metric_from_request() (in module metrics), 5

R
reset() (client.timing.Stopwatch method), 13

S
send() (client.timing.Stopwatch method), 13
Set (class in metrics), 4
set() (client.Client method), 7
Set.value (in module metrics), 5
since() (client.timing.Chronometer method), 11
Stopwatch (class in client.timing), 12
stopwatch() (client.Client method), 8
Stopwatch.client (in module client.timing), 12
Stopwatch.name (in module client.timing), 12
Stopwatch.rate (in module client.timing), 12
Stopwatch.reference (in module client.timing), 12

T
TCPBatchClient (class in client.tcp), 9
TCPClient (class in client.tcp), 9
time_callable() (client.timing.Chronometer method), 11
Timer (class in metrics), 4
Timer.milliseconds (in module metrics), 4
timing() (client.Client method), 7
to_request() (metrics.AbstractMetric method), 4

25

Statsd Metrics Documentation, Release 1.0.0

U
unit_client() (client.BatchClient method), 9

W
wrap() (client.timing.Chronometer method), 11

26 Index

	Metrics
	metrics – Metric classes and helper functions

	Client
	client – Statsd client
	client.tcp – Statsd client sending metrics over TCP

	Timing Helpers
	client.timing – Timing helpers

	Introduction
	Metric Classes
	Clients
	Timing Helpers

	Installation
	Dependencies

	License
	Development
	Python Module Index

